
Advanced Computing and Information Systems laboratory

Towards software-defined 

distributed systems

José Fortes

Center for Cloud and Autonomic Computing

Advanced Computing and Information Systems Lab



Advanced Computing and Information Systems laboratory

Outline

� Introduction to 

• Virtualization

• Service computing

• Cloud computing

• Software-defined networking

� Software-defined systems

• Software-defined virtual networking

• Software-defined Hadoop

• Software-defined distributed BLAST

• Fault-tolerant MapReduce

� Conclusions



Advanced Computing and Information Systems laboratory

“Classic” Virtual Machine

� Copy of a real machine

• “Any program run under the VM has an 
effect identical with that demonstrated if 
the program had been run in the original 
machine directly” 1

� Isolated from other virtual machines

• “�transforms the single machine 
interface into the illusion of many” 2

� Efficient

• “A statistically dominant subset of the 
virtual processor’s instructions is 
executed directly by the real processor” 2

� Also known as a “system VM”

1 “Formal Requirements for Virtualizable Third-Generation 
Architectures”, G. Popek and R. Goldberg, Communications of 
the ACM, 17(7), July 1974

2 “Survey of Virtual Machine Research”, R. Goldberg, IEEE 
Computer, June 1974

Physical 

resource

Virtual 

resources

Multiplexing

Manifolding

Polymorphism



Advanced Computing and Information Systems laboratory

Process vs. System  VMs

� In Smith and Nair’s 

“The architecture of 

Virtual machines”, 

Computer, May 2005



Advanced Computing and Information Systems laboratory

Classic/System Virtual Machines

� Virtualization of instruction sets (ISAs)

• Language-independent, binary-compatible (not JVM)

� 70’s (IBM 360/370..) – 00’s 

• (VMware, KVM, Microsoft Virtual Server/PC, z/VM, Xen, Power 

Hypervisor, Intel Vanderpool, AMD Pacifica, Virtual Box ')

� ISA+ OS + libraries + software = execution environment

� VM image = file(s) including the 

OS +  applications + configuration 

that the VM will run once started. 

� VM instance = a running VM.

� VM snapshot = state + data of a 

VM at a point in time



Advanced Computing and Information Systems laboratory

Virtualization technology

� Why is it good?

• In one word: decoupling

• Enables separation of concerns among IT layers

• E.g. resource layer delivers virtual resources, 

application layer configures resources to run 

applications as services, provider layer configures 

services to serve users )

A

B
C

A B C



Advanced Computing and Information Systems laboratory

Case in point …

� Virtualization to aid Intel in saving up to $1.8B 
through data center consolidation
• Electronic News, 10/30/2007

� To significantly reduce its total data center footprint 
and save between $1.4 and $1.8 billion over 7 years 
by replacing older technology with new multi-core 
Xeon processors, along with using techniques such 
as virtualization, Intel Corp. is reporting today that it 
is consolidating its 130 data centers worldwide to 
just 8 global hubs.
� “more images onto a server as opposed to what we 

have today: 2,500 applications that are normally on 
one server. Our ratio today is 1:1. One server 
actually has one operating system and we want to 
try to reduce that to a 4:1 .” (Brently Davis)



Advanced Computing and Information Systems laboratory

Services computing

� Aim “to enable IT services and computing 

technology to perform business services 

efficiently and effectively”

� Technology suite:

• Web Services and Service-Oriented Architecture (SOA)

• Cloud computing

• Business process modeling, transformation and 

integration

� Scope: life-cycle of services innovation research 

• componentization, modeling, creation, realization, 

annotation, deployment, discovery, composition, 

delivery, collaboration, monitoring, optimization, 

management !



Advanced Computing and Information Systems laboratory

Basic service description: interface definition

� abstract or reusable 

service definition that 

can be instantiated and 

referenced by multiple 

service implementation 

definitions

� different implementations using the same 
application can be defined to reference different 
service definitions – a form of virtualization



Advanced Computing and Information Systems laboratory

Service 

Registry

Service 

requestor

Service 

provider

Web services framework

� allows programs on a 
network to find each 
other, communicate 
and interoperate by 
using standard 
protocols and 
languages

SOAP



Advanced Computing and Information Systems laboratory

Evolve and Extend

Secure, Reliable, Transacted

Fundamentals

Web Services Architecture Timeline (AS OF 2/2004)

20032000 2001 2002 2004 2005

WS-ReliableMessagingWS-ReliableMessaging

R
e
lia
b
ility

R
e
lia
b
ility

WS-I formedWS-I formed

In
te
ro
p
e
ra
b
ility

In
te
ro
p
e
ra
b
ility

WS-I BP 1.0WS-I BP 1.0

Security RoadmapSecurity Roadmap

W
h
ite

p
a
p
e
rs

W
h
ite

p
a
p
e
rs

Reliable Messaging RoadmapReliable Messaging Roadmap

SRT Web Services WhitepaperSRT Web Services Whitepaper

WS-SecurityWS-Security

WS-TrustWS-Trust

S
e
c
u
rity

S
e
c
u
rity

WS-Security Addendum

WS-Security Profile for

Tokens

WS-Security Addendum

WS-Security Profile for

Tokens

WS-Federation
WS-Federation Active Requestor Profile

WS-Federation
WS-Federation Active Requestor Profile

WS-Security SOAP Message Security

WS-Security Username Token Profile

WS-Security X.509 Certificate Token Profile

WS-Security SOAP Message Security

WS-Security Username Token Profile

WS-Security X.509 Certificate Token Profile

WS-Security Kerberos BindingWS-Security Kerberos Binding

WS-Coordination

WS-Transaction

WS-Coordination

WS-Transaction

T
ra
n
s
a
c
tio

n
s

T
ra
n
s
a
c
tio

n
s

WS-AtomicTransactionWS-AtomicTransaction

WS-BusinessActivityWS-BusinessActivity

SOAP 1.1SOAP 1.1

M
e
s
s
a
g
in
g

M
e
s
s
a
g
in
g

SOAP Messages

with Attachments

SOAP Messages

with Attachments

WS-Referral

WS-Routing

WS-Referral

WS-Routing

DIMEDIME WS-AttachmentsWS-Attachments

WS-AddressingWS-Addressing

SOAP 1.2SOAP 1.2

MTOMMTOM

WS-EventingWS-Eventing

WS-Policy 1.1
WS-PolicyAttachments 1.1

WS-PolicyAssertions 1.1

WS-Policy 1.1
WS-PolicyAttachments 1.1

WS-PolicyAssertions 1.1

WS-Policy
WS-PolicyAttachments

WS-PolicyAssertions

WS-SecurityPolicy

WS-Policy
WS-PolicyAttachments

WS-PolicyAssertions

WS-SecurityPolicy

M
e
ta
d
a
ta

M
e
ta
d
a
ta

UDDI 1.0UDDI 1.0

WSDLWSDL

UDDI 2.0UDDI 2.0

WS-InspectionWS-Inspection

UDDI 3.0UDDI 3.0

WS-Discovery

WS-MetadataExchange

WS-Discovery

WS-MetadataExchange

Provided by Mazin Yousif, Credit to someone unknown



Advanced Computing and Information Systems laboratory

REST Services

� REST(Representational State Transfer) architecture

• Resources as URLs

• Many, small, linking to others and cacheable

• No connection state (no cookies, requests carry all info)

• Client-server, HTTP for Create/Read/Update/Delete (CRUD)



Advanced Computing and Information Systems laboratory

Interoperability/compatibility

Abstraction layer

Hardware + OS

Virtualization

Networking

Middleware

Applications

Utility/Web services

Business processes

Abstraction layer

Abstraction layer

Abstraction layer

Abstraction layer

Abstraction layer

Geo spatial application

Interoperability

Compatibility

Geo spatial application



Advanced Computing and Information Systems laboratory

Another case in point …

� Amazon Elastic Compute Cloud, also 

known as "EC2", is a commercial web 

service which allows paying customers to 

rent computers on which to run their own 

computer applications. EC2 allows scalable

deployment of applications by providing a 

web services interface through which 

customers can request an arbitrary number 

of Virtual Machines, i.e. server instances, on 

which they can load any software of their 

choice. Current users are able to create, 

launch, and terminate server instances on 

demand, hence the term "elastic". 



Advanced Computing and Information Systems laboratory

NIST Cloud Computing Definition

� a model for enabling convenient, on-demand 

network access to a shared pool of 

configurable computing resources (e.g., 

networks, servers, storage, applications, and 

services) that can be rapidly provisioned and 

released with minimal management effort or 

service provider interaction.

� a model where resources " are abstracted 

and provided as services on the Internet"

NIST SP 800-145, SP 500-

292 

docs.openstack.org



Advanced Computing and Information Systems laboratory

NIST’s  5 cloud characteristics

� On-demand self-service

• When needed at customer’s initiative 

� Broad network access

• Access through standard networks

� Resource pooling

• Transparent sharing and location of resources

� Rapid elasticity

• So one can use as many resources as needed

� Measured Service

• So one can pay/be paid per use



Advanced Computing and Information Systems laboratory

NIST Cloud Service Models

� Cloud Software as a Service (SaaS) 

consumer uses the provider’s applications 

running on a cloud infrastructure. 

� Cloud Platform as a Service (PaaS) 

consumer deploys or develops applications 

created using programming languages and 

tools supported by the provider. 

� Cloud Infrastructure as a Service (IaaS) 

consumer deploys/runs arbitrary software on 

processing, storage, networks, and other 

managed computing resources



Advanced Computing and Information Systems laboratory

IaaS vs. PaaS vs. SaaS



Advanced Computing and Information Systems laboratory

Consumer vs. provider concerns



Advanced Computing and Information Systems laboratory

NIST Deployment Models

� Private cloud: operated solely for an 

organization (managed by the organization 

or a third party, on-premise or off-premise)

� Community cloud: shared by several 

organizations, for a specific community with 

shared concerns 

� Public cloud: generally available from seller

� Hybrid cloud: composition of clouds (private, 

community, or public) so to enable data and 

application portability (e.g., cloud bursting for 

load balancing between clouds). 



Advanced Computing and Information Systems laboratory

NIST Reference Architecture



Advanced Computing and Information Systems laboratory

Main points

� Using clouds you can

• Get the IT system/software/applications you 

need - as a service, 

• when you need them

• for as long as you need them and 

• pay only (very little!) for what you use

� Cloud consumers can build IT systems 

using cloud components and provide 

end-users with services

• Ability to customize components is desirable



Advanced Computing and Information Systems laboratory

What is Software-Defined Networking?

� Broad Definition

• Open Network Foundation: “an architecture that 

enables direct programmability of networks”

• Internet Engineering Task Force: “an approach that 

enables applications to converse with and manipulate 

the control software of network devices and resources” 

– Internet Draft, Sep. 2011 by T. Nadeau

� OpenFlow

• An approach to SDN with physical separation between 

control and data planes

• Provides open interfaces (APIs)

• SDN is not OpenFlow but OpenFlow is a step towards 

SDN



Advanced Computing and Information Systems laboratory

Original need for Openflow

� Network infrastructure “ossification”

• Large base of devices and protocols

• Networking experiments cannot compete with production 

traffic

• No practical way to test new network protocols in realistic 

settings

� Closed systems

• Vendor lock-in

• Proprietary management interfaces – lack of standard or 

open interfaces

• Hard to establish collaborations

� “Today's networks are complex, functionally limited, 

and resistant to change; SDN changes all that”



Advanced Computing and Information Systems laboratory

OpenFlow Architecture

� Separate control plane and data plane

• Run control plane software on general purpose hardware

• Programmable data plane

Software-

definition 

Interface

Management 

Interface



Advanced Computing and Information Systems laboratory

OpenFlow Flow Table Entry

Switch

Port

MAC

src

MAC

dst

Eth

type

VLAN

ID

IP

Src

IP

Dst

IP

Prot

TCP

sport

TCP

dport

Rule Action Stats

1. Forward packet to port(s)

2. Encapsulate and forward to controller

3. Drop packet

4. Send to normal processing pipeline

Packet + byte counters

Source: Nick McKeown, “Why Can't I Innovate in My Wiring Closet?”, MIT 

CSAIL Colloquium, April 2008



Advanced Computing and Information Systems laboratory

Examples

From BrandonHeller’s Tutorial at http://www.opennetsummit.org/archives-april2012.html

Switching 

Flow Switching 

Firewall 

Routing

VLAN Switching 



Advanced Computing and Information Systems laboratory

Nick McKeown’s perspective

� Where is the functionality?

• From closed boxes, distributed protocols



Advanced Computing and Information Systems laboratory

Software defined networking

� Where is the functionality?

• From closed boxes, distributed protocols to open boxes



Advanced Computing and Information Systems laboratory

Software defined network



Advanced Computing and Information Systems laboratory

Scott Shenker’s perspective

� SDN uses abstractions to program 

networks

• Forwarding Abstraction

• State Distribution Abstraction

• Network Operating System (NOS)

� NOS plus Forwarding Abstraction = SDN v1

� Add a specification abstraction (SDN v2)

• Implemented through “Nypervisor”

� Next two slides from Scott Shenker’s talk 

“The Future of Networking, and the Past of 

Protocols”



Advanced Computing and Information Systems laboratory

Global Network View

Protocols Protocols

Control Program

Network Operating System

Current NetworksSoftware-Defined Networking (v1)

Control via 

forwarding 

interface



Advanced Computing and Information Systems laboratory

Nypervisor

Abstract Network View

Global Network View

Network Operating System

Moving from SDNv1 to SDNv2

Control Program



Advanced Computing and Information Systems laboratory

SDN and Cloud Computing

� Cloud Computing

• Dynamic environment: resources (physical and virtual), users, and 

applications frequently come and go

• Large scale infrastructure

• Need efficient mechanisms to change how networks operate

� Without SDN

• Rely on vendor-provided and in-house software to manage the 

network

• Manually generated or semi-automatically generated 

configurations

• Only cloud/network administrators can interact with network 

equipment

� With SDN

• Network “programming” instead of network configuration

• Potentially open to users/system-developers/applications



Advanced Computing and Information Systems laboratory

Current systems stacks

Abstraction layer

Hardware + OS

Virtualization

Networking

Middleware

Applications

Utility/Web services

Business processes

Abstraction layer

Abstraction layer

Abstraction layer

Abstraction layer

Abstraction layer

Interoperability

Compatibility

Management

Management

Management

Management

Management

Management

Management



Advanced Computing and Information Systems laboratory

Software-defined systems stacks

Abstraction layer

Hardware + OS

Virtualization

Networking

Middleware

Applications

Utility/Web services

Business processes

Abstraction layer

Abstraction layer

Abstraction layer

Abstraction layer

Abstraction layer

Interoperability

Compatibility

Management

Management

Management

Management

Management

Management

Management

S
o
ftw

a
re
-d
e
fin

itio
n



Advanced Computing and Information Systems laboratory

Virtual Networking (VN) with ViNe

37

� Dedicated resources in each broadcast domain (LAN) for 

VN processing –ViNe Routers (VRs)

• No VN software needed on nodes (platform independence)

• VNs can be managed by controlling/reconfiguring VRs

• VRs transparently address connectivity problems for nodes

• VR = computer running ViNe software

• Easy deployment

• Proven mechanisms can be 
incorporated in physical 

routers and firewalls.

• In OpenFlow-enabled 
networks, flows can be 
directed to VRs for L3 

processing



Advanced Computing and Information Systems laboratory

Connectivity Recovery in ViNe

� VRs with connectivity limitations (limited-VRs) initiate connection (TCP or 

UDP) with VRs without limitations (queue-VRs)

� Messages destined to limited-VRs are sent to corresponding queue-VRs

� Long-lived connection possible between limited-VR and queue-VR

� Generally applicable

38

Internet

Limited VR

Queue VR

VR

Send message
Open connection

Retrieve message

� Network virtualization processing 
only performed by VRs

� Firewall traversal only needed for 
inter-VR communication

� ViNe firewall traversal mechanism:



Advanced Computing and Information Systems laboratory

ViNe Routing

� Local Network Description Table (LNDT)

• Describes the VN membership of a node

� Global Network Description Table (GNDT)

• Describes sub-networks for which a VR is responsible

Linux 

Netfilter

packet  

processing in 

Java 

in user space 

Linux 

Libnet
Compute nodes need no 

additional software

Processing Time

12µs/message

Protocol data

MessageTCP/IP

header

VN

header

TCP/IP

header

cation

Appli

cation



Advanced Computing and Information Systems laboratory

ViNe Routing

� Local Network Description Table (LNDT)

• Describes the VN membership of a node

� Global Network Description Table (GNDT)

• Describes the sub-networks that a VR is responsible for

� Suppose that a VR with the following routing tables, received 

a packet from 172.16.0.10 destined to 172.16.10.90

LNDT

Host ViNe ID

172.16.0.10 1

172.16.0.11 2

GNDT – ViNe ID 1

Network/Mask Destination

172.16.0.0/24 VR-a

172.16.10.0/24 VR-b

GNDT – ViNe ID 2

Network/Mask Destination

172.16.0.0/24 VR-a

172.16.20.0/24 VR-c



Advanced Computing and Information Systems laboratory

ViNe Routing

Public

network A

Private network C

Private network B

Public

network D

Internet

VR

ViNe domain

ViNe domain

ViNe domain

ViNe domain

R

N

F

Router

NAT

Firewall

ViNe

Router

H Host

H

N
H4

H2

A

H

VH2

VRA

VH4

VH

VRC

R

F H3

H1
H

VRB

VH

N

VH1

VRD

B

H

VH3

Virtual Space

Physical Space

Example: VH1

sends a packet to 

VH2

Packet with header VH1→VH2

is directed to VRB using L2 

communication (MAC VH1→ 

MAC VRB) VRB looks up its routing table. 

The table indicates that the 

packet should be forwarded to 

“A”

ViNe packet is encapsulated 

with an additional header for 

transmission in physical 

space: B→A:(VH1 → VH2)

ViNe header is 

stripped off for 

final delivery

Original, unmodified packet 

VH1→VH2 is delivered



Advanced Computing and Information Systems laboratory

ViNe Management Architecture

42

� ViNe Central Server
• Oversees global VN management

• Maintains ViNe-related information

• Authentication/authorization based on Public Key Infrastructure

• Remotely issue commands to reconfigure VR operation

Central ViNe Central 

Server
Requests

Requests

VR VR

Requests

. . .

Configuration 
actions

� VR operating parameters changeable at run-time
• Overlay routing tables, buffer size, encryption on/off

• Autonomic approaches possible

• Java reflection to map commands to method invocations



Advanced Computing and Information Systems laboratory

Typical IaaS Cloud Network

Physical 

Network

6

vNIC

6

NIC

VM A1 VM A2

Physical Server A Physical Server B

Firewall
proxyARP
Forwarding

vNIC vNIC

6

vNIC NIC

VM B1 VM B2

Firewall
proxyARP
Forwarding

vNIC vNIC



Advanced Computing and Information Systems laboratory

Network Restrictions in Clouds

� To address dangers of VM privileged users
• change IP and/or MAC addresses, configure NIC in promiscuous 

mode, use raw sockets, attack network (spoofing, proxy ARP, 

flooding, �)

� Internal routing and NAT

• granted IP addresses (especially public) are not directly configured 

inside VMs, and NAT techniques are used (many intermediate 

nodes/hops in LAN communication)

� Sandboxing (disables L2 communication)

• VMs are connected to host-only networks

• VM-to-VM communication is enabled by a combination of NAT, 

routing and firewalling mechanisms

� Packet filtering (beyond usual, VM can not be VR)

• only those VM packets containing valid addresses (IP and MAC 

assigned by the provider) are allowed



Advanced Computing and Information Systems laboratory

ViNe Routing

Public

network A

Private network C

Private network B

Public

network D

Internet

VR

ViNe domain

ViNe domain

ViNe domain

ViNe domain

R

N

F

Router

NAT

Firewall

ViNe

Router

H Host

H

N
H4

H2

A

H

VH2

VRA

VH4

VH

VRC

R

F H3

H1
H

VRB

VH

N

VH1

VRD

B

H

VH3

Virtual Space

Physical Space

Example: VH1

sends a packet to 

VH2

Packet with header VH1→VH2

is directed to VRB using L2 

communication (MAC VH1→ 

MAC VRB) 
VRB looks up its routing table. 

The table indicates that the 

packet should be forwarded to 

“A”

ViNe packet is encapsulated 

with an additional header for 

transmission in physical 

space: B→A:(VH1 → VH2)

ViNe header is 

stripped off for 

final delivery

Original, unmodified packet 

VH1→VH2 is delivered
Problem: communication is

blocked in cloudsProblem: packet 

injection is blocked 

in clouds



Advanced Computing and Information Systems laboratory

Solution

� Configure all nodes to work as VRs
• No need for host-to-VR L2 communication

• TCP or UDP based VR-to-VR communication circumvents 
the source address check restriction

� But)
• Network virtualization software required in all nodes

• Network virtualization overhead in inter- and intra-site 
communication

• Complex configuration and operation

� TinyViNe
• No need to implement complex network processing –

leave it to specialized resources (i.e., full-VRs)

• Keep it simple, lightweight, tiny

• Use IP addresses as assigned by providers

• Make it easy for end users to deploy



Advanced Computing and Information Systems laboratory

TinyViNe

� TinyViNe software

• Enables host-to-VR communication on clouds 

using UDP tunnels

• TinyVR – nodes running TinyViNe software

� TinyVR processing

• Intercept packets destined to full-
VRs

• Transmit  to a VR the intercepted 
packets through UDP tunnels

• Decapsulate incoming messages 
through UDP tunnels

• Deliver the packets



Advanced Computing and Information Systems laboratory

What is MapReduce?

� programming model and associated implementation 

for processing/generating large data sets. 

� Hadoop = open-source implementation of MapReduce

� users specify a map function that processes a 

key/value pair to generate a set of intermediate 

key/value pairs, and a reduce function that merges all 

intermediate values associated with the same 

intermediate key

� beginner’s example: how many instances of a given 

word exist an a set of files?

• <File1> <to be good>    <File2> <to be or not to be>



SALSA

MapReduce

• Implementations support:

– Splitting of data

– Passing the output of map functions to reduce functions

– Sorting the inputs to the reduce function based on the 
intermediate keys

– Quality of service

– Fault-tolerance

– …

Map(Key, Value)  

Reduce(Key, List<Value>)  

Data Partitions

Reduce Outputs

A hash function maps 

the results of the map 

tasks to r  reduce tasks



Advanced Computing and Information Systems laboratory

Map pseudo-code segment

map(String input_key, String input_value):

// input_key: document name 

// input_value: document contents 

for each word w in input_value: 

EmitIntermediate(w, "1"); 

<File1> <to be good> <File2> <to be or not to be>

<to> <1>

<be> <1>

<good> <1>

<to> <1>

<be> <1>

<or> <1>

<not> <1>

<to> <1>

<be> <1>



Advanced Computing and Information Systems laboratory

Reduce pseudo-code segment
reduce(String output_key, Iterator intermediate_values): 

// output_key: a word 

// output_values: a list of counts 

int result = 0; 

for each v in intermediate_values: result +=ParseInt(v);

Emit(AsString(result));

Key = <to>

Values = 

<1><1><1>

<3>

Key = <be>

Values = 

<1><1><1>

<3>

Key = <or>

Values = <1>

<1>

Key = <not>

Values = <1>

<1>

Key = <good>

Values = <1>

<1>

<to> <3>

<be> <3>

<or> <1>

<not> <1>

<good> <1>

Output 



Advanced Computing and Information Systems laboratory

Other Applications

� Distributed Grep

� Count of URL Access Frequency

� Reverse Web-Link Graph

� Term-Vector per Host

� Inverted Index

� Distributed Sort

� Web-indexing, ad analytics, data 

mining, bioinformatics, log analysis, 

recommendation systems, etc.



Advanced Computing and Information Systems laboratory

What happens under the hood



Advanced Computing and Information Systems laboratory

Locality

� Master program divides up tasks based 

on location of data: tries to have map() 

tasks on same machine as physical file 

data, or at least same rack

� map() task inputs are divided into 64 MB 

blocks: same size as Google File 

System chunks



Advanced Computing and Information Systems laboratory

Fault Tolerance

� Master detects worker failures
• Re-executes completed & in-progress map() 

tasks

• Re-executes in-progress reduce() tasks

� Master notices particular input 
key/values cause crashes in map(), and 
skips those values on re-execution.
• Effect: Can work around bugs in third-party 

libraries!



Advanced Computing and Information Systems laboratory

Optimization

� No reduce can start until map is complete:

• A single slow disk controller can rate-limit the 

whole process

• Master redundantly executes “slow-moving” map 

tasks; uses results the copy that finishes first

� “Combiner” functions can run on same 

machine as a mapper

• Causes a mini-reduce phase to occur before the 

real reduce phase, to save bandwidth



Advanced Computing and Information Systems laboratory

How it happens

MASTER

SCHEDULING 

COMMANDS

JOB 

TRACKER

NAME

NODE

META DATA 

REQUEST

ALIVE MSGS

META DATA

RESPONSE

SLAVE

TASK 

TRACKER

& DATA 

NODE 

DAEMONS

LOCAL 

STORAGE

SLAVE

TASK 

TRACKER

& DATA 

NODE 

DAEMONS

LOCAL 

STORAGE

SLAVE

TASK 

TRACKER

& DATA 

NODE 

DAEMONS

LOCAL 

STORAGE

SLAVE

TASK 

TRACKER

& DATA 

NODE 

DAEMONS

LOCAL 

STORAGE

SLAVE

TASK 

TRACKER

& DATA 

NODE 

DAEMONS

LOCAL 

STORAGE

SLAVE

TASK 

TRACKER

& DATA 

NODE 

DAEMONS

LOCAL 

STORAGE



Advanced Computing and Information Systems laboratory

Many static parameters

� dfs.block.size

• size of data blocks in which the input data set is split.

• Larger: less map task creation overhead, may 

undertutilize cluster resources and lots of I/O. 

• Smaller: more overhead in map task creation

� io.sort.mb

• size of in-memory buffer for map task to sort its output

• Larger: sorting fast, fewer spills to disk

• Too large: limits memory used by other MR threads

� io.sort.factor

• max number of streams to merge at once when sorting files

• Larger: fewer rounds of merging (faster) but more CPU

• Smaller: require less CPU resources.



Advanced Computing and Information Systems laboratory

Many dynamic parameters

� in fair-scheduler.xml (reloaded every 3 seconds)

• maxMaps, maxReduces: set max concurrent task slots

• schedulingMode: fair sharing or fifo

• maxRunningJobs: number of concurrent jobs

• Weight: share relative to other pools

• minSharePreemptionTimeout: seconds the pool will wait 

before killing other pools’ tasks if it is below its minimum share 

• poolMaxJobsDefault: running job limit for pools

• userMaxJobsDefault, running job limit for users

• defaultMinSharePreemptionTimeout:

fairSharePreemptionTimeout:

• defaultPoolSchedulingMode:



Advanced Computing and Information Systems laboratory

Software-defined MapReduce



Advanced Computing and Information Systems laboratory

UCSD

FutureGrid

UF

FutureGrid

UC

Multicloud Hadoop-based BLAST

UF

PU

Melbourne, Australia

connected to UF (ssh)

ViNe 

Download 

Server 1. ViNe-enable sites

2. Configure ViNe VRs

3. Instantiate BLAST VMs

4. Contextualize
a.Retrieve VM information

b.ViNe-enable VMs

c.Configure Hadoop

Tiny 

ViNe
Tiny 

ViNe

Virtual Cluster Intel Xeon Woodcrest, 2.33 

GHz, 2.5 GB RAM, Linux 

2.6.16

AMD Opteron 248, 2.2 GHz, 

3.5 GB RAM, Linux 2.6.32

Intel Xeon Prestonia, 2.4 

GHz, 3.5 GB RAM, Linux 

2.6.18



Advanced Computing and Information Systems laboratory

Autonomic SD systems

Abstraction layer

Hardware + OS

Virtualization

Networking

Middleware

Applications

Utility/Web services

Business processes

Abstraction layer

Abstraction layer

Abstraction layer

Abstraction layer

Abstraction layer

Management

Management

Management

Management

Management

Management

Management

System 

behaviorFeedback



Advanced Computing and Information Systems laboratory

Faults & MapReduce

Built-in fault-tolerance in Hadoop

• Simple and based on task re-execution

• Job can run to completion

• Can result in performance penalties
• Penalties of up to 139%, Node failure: [MASCOTS2009]

• Penalties of up to 34%, Outliers, [OSDI2010]

• Penalties of up to 350%, TaskTracker failure [HPDC2012] 

• “Usually allot 2 hours to a 1 hour job”: Yahoo, personal communication

• depend on workload characteristics, faultoad (time, number & type of 

faults), resources (number of slave nodes in the job), configuration 

parameters (block size of data, timeout interval)

Goal: Improve fault management in MapReduce 

through an online, on-demand, closed-loop solution.

� Not re-implement MapReduce or change Hadoop



Advanced Computing and Information Systems laboratory

Early fault detection

� Time taken for fault detection

� After detection, recover through horizontal 
scaling



Advanced Computing and Information Systems laboratory

Anomaly detection

� Goal: Observe slave node operation and detect a 
performance anomaly as soon as possible

� Desired characteristics of anomaly detection technique
�Good accuracy for both
�Normal condition (True negative rate)

�Anomalous condition (True positive rate)

�Short testing/prediction computation time

�Short training time

�Scalable to a large number of nodes

�Able to work with limited or no anomalous data

� Vast number of anomaly detection techniques, 
however with very specific applicability

65



Advanced Computing and Information Systems laboratory

Single class classification 

� Using sparse code representation of input feature vector

• Represent high-dimensional data using few new 
dimensions 

• Captures inherent nature of processes generating data

• Only an approximation. So there is always an “error”. 

� Error is key! 

• When normal data is represented in sparse code, errors 
are similar (i.e. belong to a pre-characterized distribution)

• When anomalous data is represented

in sparse-code, errors do not belong to

this distribution

� State-of-art applications in: 

• Signal processing

• Image processing
66



Advanced Computing and Information Systems laboratory

Sparse code representation

� Difference in sparse coding 
errors for normal and 
anomalous data.

� Applications shown in 
figure:
�Wordcount

�Pi estimation

�Grep

� Training: Offline; Find 
sparse code for all training 
vectors.

� Testing: Find error for just 
one test vector

67



Advanced Computing and Information Systems laboratory

Sparse code representation

� Difference in sparse coding 
errors for normal and 
anomalous data.

� Applications shown in 
figure:
�Wordcount

�Pi estimation

�Grep

� Training: Offline; Find 
sparse code for all training 
vectors.

� Testing: Find error for just 
one test vector

68

Consequences:

� Fast testing time (few vector operations)

� No need for anomaly data

� Decentralized local models -> scale well



Advanced Computing and Information Systems laboratory

MAPE components of FMR

69

MAP-REDUCE 

SYSTEM

MAP-REDUCE 
APPLICATION

MAP-REDUCE 
FRAMEWORK

SYSTEM SOFTWARE

INFRASTRUCTURE

MONITORING MODULE

GANGLIA BASED 
MONITORING

NODE HEALTH SCRIPT

PLANNING MODULE

SCALING HEURISTIC
(MASTER)

ANOMALY DETECTION
(SLAVE) 

ANALYSIS MODULE

HEART BEAT 
PROCESSING

(USING GANGLIA 
METRIC MODULES)

PRECURSOR 
DETECTION 

(USING HADOOP NODE 
HEALTH SCRIPT)

EXECUTION MODULE

RESOURCE SCALING

BLACK-LISTING

PREDICTION MODELS
(MASTER)

COST MODELS 
(MASTER)



Advanced Computing and Information Systems laboratory

MAPE components of FMR

70

MAP-REDUCE 

SYSTEM

MAP-REDUCE 
APPLICATION

MAP-REDUCE 
FRAMEWORK

SYSTEM SOFTWARE

INFRASTRUCTURE

MONITORING MODULE

GANGLIA BASED 

MONITORING

NODE HEALTH SCRIPT

PLANNING MODULE

SCALING HEURISTIC

(MASTER)

ANOMALY DETECTION

(SLAVE) 

ANALYSIS MODULE

HEART BEAT 

PROCESSING

(USING GANGLIA 

METRIC MODULES)

PRECURSOR 
DETECTION 

(USING HADOOP NODE 
HEALTH SCRIPT)

EXECUTION MODULE

RESOURCE SCALING

BLACK-LISTING

PREDICTION MODELS
(MASTER)

COST MODELS 
(MASTER)

� Monitoring & 

Analysis:

�Ganglia + metric 

modules

�Node health 

script



Advanced Computing and Information Systems laboratory

MAPE components of FMR

71

MAP-REDUCE 

SYSTEM

MAP-REDUCE 
APPLICATION

MAP-REDUCE 
FRAMEWORK

SYSTEM SOFTWARE

INFRASTRUCTURE

MONITORING MODULE

GANGLIA BASED 

MONITORING

NODE HEALTH SCRIPT

PLANNING MODULE

SCALING HEURISTIC

(MASTER)

ANOMALY DETECTION

(SLAVE) 

ANALYSIS MODULE

HEART BEAT 

PROCESSING

(USING GANGLIA 

METRIC MODULES)

PRECURSOR 
DETECTION 

(USING HADOOP NODE 
HEALTH SCRIPT)

EXECUTION MODULE

RESOURCE SCALING

BLACK-LISTING

PREDICTION MODELS
(MASTER)

COST MODELS 
(MASTER)

� Planning & 
Execution:
�Anomaly 

detection

�Execution time 
prediction:
� Regression ML 

models 
[ICCCN2012]

�Scaling heuristic
� Analytical model 



Advanced Computing and Information Systems laboratory

Evaluation – Anomaly detection

Anomaly detection accuracy 

for 

- Different applications

- Different types of faults

- Different VM instance sizes

72



Advanced Computing and Information Systems laboratory

Evaluation – Anomaly detection

Anomaly detection accuracy 

for 

- Different applications

- Different types of faults

- Different VM instance sizes

73

To summarize:

� True positive rate >0.7

� True negative rate > 0.8



Advanced Computing and Information Systems laboratory

Evaluation – Anomaly detection

74

� Multilayer perceptron, K-means clustering: 
Require anomalous training data

� Single-class SVM: Low true negative rates

To summarize:

We now have an anomaly detection technique with 

�Good accuracy

�Fast training and testing time

�Capable of scaling to a large number of slave 

nodes

�No need for anomalous training data



Advanced Computing and Information Systems laboratory

Evaluation: Closed-loop FMR

� Anomaly detection through sparse coding provides a key component 

to complete the control loop

� Example evaluation of FMR on a 32-node and 62-node cluster:

75



Advanced Computing and Information Systems laboratory

Evaluation: Closed-loop FMR

� Anomaly detection through sparse coding provides a key component 

to complete the control loop

� Example evaluation of FMR on a 32-node and 62-node cluster:

76

To summarize:
� Averaged over all experiments: Penalty reduced from 119% to 14%



Advanced Computing and Information Systems laboratory

Conclusions

� Software definition of different layers of IT 

systems enables flexibility, optimizations 

and functionality not possible otherwise

� Much work needs to be done

• What control and management capabilities can 

be factored out or added and made available to 

upper layers?

• What are the security and management 

implications for lower layers?

• What should be static and what should be 

dynamic?

• Can we build self-software-defined systems?



Advanced Computing and Information Systems laboratory

Acknowledgements

� Work done jointly with Mauricio Tsugawa, 

Andrea Matsunaga and Selvi Kadirvel

� Funding from NSF and CAC industry 

members

� Colleagues from ACIS and NSF Center for 

Cloud and Autonomic Computing


